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Theoretical studies of the influence of backflow on the dynamical 
behaviour of a Fredericks transition of a ferroelectric smectic C* liquid 

crystal in the bookshelf geometry 

by TOMAS CARLSSON* 
Physics Department, Chalmers University of Technology, S-412 96 Goteborg, Sweden 

NOEL A. CLARK and ZHONG ZOU 
Department of Physics, University of Colorado, Boulder, Colorado 80309, U S A .  

(Received 4 January 1993; accepted 5 M a y  f993) 

The elastic-hydrodynamic theory for the ferroelectric smectic C* phase is 
reviewed and the governing equations for the dynamical behaviour of a surface 
stabilized ferroelectric liquid crystalline cell are written down, taking the possibility 
of macroscopic mass flow in the system into account. The influence of backflow 
effects on the dynamical cell behaviour and a control parameter, determining 
whether backflow effects will be of importance or not, is derived. It is shown that 
when backflow effects are pronounced, the response time of the switching can be 
considerably decreased. Also, the shape of the c-director and velocity profiles across 
the cell are shown to be strongly dependent on the presence of backflow. 

1. Introduction 
The director dynamics of the ferroelectric smectic C* (S,*) phase have been studied 

intensively during the past decade. The main reason for this interest is, of course, the 
discovery that liquid crystals in the S,* phase can be used for developing [l] 
electro-optical devices. The analysis of all dynamical studies of the SE phase has up to 
now been performed with the assumption that no macroscopic flow is coupled to the 
reorientation of the director. One reason for this neglect is that the proper formulation 
of the hydrodynamic equations of the S z  phase which is needed in order to incorporate 
the macroscopic flow into the analysis has become available only recently [2,3]. 
However, one knows from the study of nematic liquid crystals that backflow effects 
[4,5] play an essential role when analysing the dynamical properties and can 
practically never be neglected in a complete analysis of the director reorientation of the 
system. The purpose of this paper is to investigate to what extent backflow effects are 
also essential for the switching behaviour of a surface stabilized ferroelectric liquid 
crystal (SSFLC) cell. In the analysis we will apply the recently formulated dynamical 
theory of S z  liquid crystals [2,3] in studying the dynamics of an electrically induced 
Fredericks transition in a SSFLC. 

The outline of the paper is as follows: In $ 2  we define the quantities necessary to 
describe the system we study, introducing coordinates and notations. We also specify 
the geometry of the particular Fredericks transition for which we study the influence of 
backflow on the dynamical behaviour. In $3  we write down the general elastic- 
hydrodynamic equations governing the dynamical behaviour of the s,* phase. The tilt 
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462 T. Carlsson et a2. 

angle dependence of the twenty viscosity coefficients and nine elastic constants, needed 
by symmetry to describe the system, is described in $4. With the equations written 
down in $ 3  as a starting point, in $5 the equations governing the dynamics of the 
Fredericks transition are derived. As we will only study the initial part of the transition, 
we also write down the linearized version of these equations. As a reference, in 9: 6 we 
solve these equations neglecting backflow effects. Finally, in $ 7, we incorporate 
backflow into the analysis. Thus, by comparing with the results in the previous section, 
we are able to show under which circumstances and in which way backflow will 
influence the dynamical behaviour of the Fredericks transition we have chosen to 
study. 

2. A Fredericks transition in a SSFLC-introduction of notation and definition of 
coordinates 

The basic quantities needed to describe a S z  liquid crystal are defined in figure 1. In 
this work we assume the smectic layers to consist of uniform planes with a fixed 
orientation, parallel to the xy  plane. The layer normal, thus being parallel to the z axis, 
is denoted a. Studying an incompressible, dislocation-free medium the layer normal 
must be subject to the constraint [6]  

V x a = O ,  (1) 

a constraint that is automatically fulfilled within the assumption a= 2. The average 
orientation of the molecular long axes, the director, is denoted A, while the projection of 
the director into the smcctic planes is described by a unit vector e, commonly denoted 
the c-director. In order to describe the orientation of the c-director we introduce the 
phase angle 4, which is the angle between the c-director and the x axis, counting q!~ 
positive for a rotation around the positive z axis. Unless the system is very close to the 
SZ-S); phase transition temperature, T,, we can assume the tilt angle 0, is., the angle 
between the director and the layer normal, to be fixed [7], only depending on the 
temperature of the system. We will study only the case O=constant in this work. The 
spontaneous polarization P of a S y  liquid crystal is confined within the smectic planes 
and is at right angles [S] to the c-director. Introducing a unit vector b according to 

b = a x c ,  (2) 

this unit vector will coincide with the polarization vector provided we are studying a 
(+) compound in the nomenclature of Clark and Lagerwall [9]. Assigning the 
polarization, Po, to be positive for a (+) compound and negative for a ( - )  compound 
we thus can write 

P=P,b. ( 3 )  

In figure 2(a)  is depicted a SSFLC cell of thickness cl in one of its stable ground 
states. We assume the c-director to be in the state $ = O  thoughout the sample, 
corresponding to the polarization P pointing upwards provided we are studying a ( + ) 
compound. By applying an electric field E: in a direction opposing P, i.e. E = - E,y 
where E, is the magnitude of the field, one will for a strong enough field induce a 
Fredericks transition. Assuming strong anchoring at the bounding plates, the 
polarization will now everywhere except at the boundaries of the cell switch to the 
downward position and the system will adop the director profile depicted in figure 2 (b). 
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Backflow in S z  Fredericks transitions 463 

Figure 1. Notation used in the present work. The average molecular direction, the director, is 
given by a unit vector n making an angle Q with the layer normal a, which is taken to be 
parallel to the z axis. The c director, being a unit vector parallel to the projection of the 
director into the smectic planes (the xy plane), is denoted by e and is described by the phase 
angle 4. The spontaneous polarization P is characterized by the unit vector b which, if we 
are studying a (+) compound, is given by the relation b = a x c. 

Studying the dynamics of this transition, we thus want to calculate the time and space 
dependence of 4 = 4(y, t )  for which the initial and boundary conditions are given by 

4 ( Y ,  O)= 0, 4 (-;, t )  = 4 (;, I )  =o, (4) 

respectively. 
As was pointed out in the introduction we should always expect the transition- 

between the two states in figure 2 to be accompanied by a macroscopic flow. Due to this 
flow there will also be a force z = z i i  per unit area exerted on the bounding plates. The 
velocity vector v is, if we consider the system to be incompressible, subject to the 
constraint 

v . v = o .  ( 5 )  

Furthermore, neglecting the possibility of transportation of material between the 
smectic layers, the velocity field must fulfil the relation 

a.v=O,  (6) 

and in the simplest case (neglecting the possibility for the system of developing rolls, i.e. 
neglecting velocity components in the y direction) the velocity field will be of the form 

v = u( y)f. (7) 
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/ / 

d y = - -  2 

/ E=x i 

b,. 
(4 (h)  

Figure 2. (a) The SSFLC cell in one of its stable states. The c director is everywhere parallel to 
the x axis and the spontaneous polarization P is pointing upwards throughout the cell. (b) 
If a strong enough electric field E is applied in a direction opposing the spontaneous 
polarization, a Fredericks transition will be induced, forcing the polarization to point 
downwards everywhere except at the boundaries of the cell. 

introducing the usual non-slip condition at the bounding plates, we can assign the 
following initial and boundary conditions t c  the velocity field 

u ( y ,  0) = 0 .( -;, 1 )  = .( 2, L )  = 0. 

The purpose of this paper is now to investigate to what extent the presence of a back- 
flow of the form discussion above will influence the dynamics of the Fredericks 
transition depicted in figure 2. 

3. Summary of the equations governing the elastic-hydrodynamic behaviour of the 
smectic C* phase 

We now proceed by writing down the equations governing the elastic- 
hydrodynamic behaviour of the S y  phase. The basic mathematical formulation of these 
equations has recently been derived by Leslie et al. [2, lo], and has been interpreted 
further and reformulated by Carlsson et al. [3]. The governing equations consist of one 
equation for the balance of linear momentum, 
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BackJow in S,* Fredericks transitions 465 

and one equation for the balance of angular momentum, 

In these equations, p is the density of the liquid crystal, P i  the sum of all external forces 
and fij is the viscous part of the stress tensor. Equation (10) can be interpreted as a 
balance of torque equation in which the term q j k f k j  is the viscous torque r', and Ti 
represents the sum of all other torques acting on the system. The viscous part of the 
stress tensor fij is most conveniently expressed as the sum of its symmetrical (f:j) and 
antisymmetrical (f;j) parts 

Introducing the following quantities 

D..=$(u. .+u.  .) pv.='(v -0. .) V 1 .J  1 . 1 7  CJ 2 i,j 1 . 1 ,  

DF = D.. c . D: = Dij aj I V J' 

Ai=hi-Wikak, C .= i . . -w .  I I rk c k? 

we can write the viscous stress tensor as, 

f ~ j = p , D i j + p i U , D ; U i U j + ~ Z ( D S ~ j +  D ~ u J  + P ~ c , D ; c ~ c ~ + P ~ ( D ~ c ~ +  D;ci) 

+ ~5cpD",(aicj+ajci) + Ji(Aiaj+ Ajai)+ &(Cicj+ Cjci)+ & c , A , ( ~ i ~ j +  a j ~ i )  

+ rc1(D;cj + D?ci + Dfaj + DTai) + ~ , [ a , D ~ ( a ~ c ~ +  ajci) + 2a,D~aiaj]  

+ x,Cc,D;(~icj + ajci) + 2a,DC,~i~j] + zl(Ciaj + CjaJ + ~,(Aic j  + AjcJ 

+ 2z,cpA,aiaj + 2z4c,A,cicj, 

+ L 5 ( C j C i - -  CiCj) + ~,c ,Ap(aic j -  U j C i )  + zl(DQci-D;cj) + z,(Dfa, - DTaJ 

( 1  5)  
f ~ j = i l i ( D g a i - D q ~ j ) + 1 z ( D f ~ i - D f ~ j )  + ~ 3 ~ , D " , ~ i ~ j - - a j ~ i ) + ; l , ( A j ~ , - A ~ a ~ )  

+z,a,D~((aicj-ujci)+z4c,D~(aicj-ajci) +z5(Ajc i -A ic j+  Cjai-  Ciaj), (16) 

where the twenty coefficients p i ,  ,Ii, rci and zi are the viscosity coefficients of the system. 
The torques which we will have reason to incorporate in the analysis in this work 

are, apart from the viscous torque r', also the elastic torque re', the electric torque rE 
and the countertorque r", which is the torque acting on the system in order to keep the 
layers fixed [ 3 ] ,  i.e. 

r=rel+rE+rC. (17) 

It is possible to show that when studying a system for which the smectic layers are 
assumed to be fixed, the 8-component of the torque equation (10) is the relevant one to 
study [ 3 ] .  Furthermore the symmetry of the system demands [3 ]  

where ri is the 8-component of the countertorque. 
The @-component of the elastic torque can be calculated as [3 ,11] .  
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466 T. Carlsson et al. 

where ge’ is the elastic free energy density which is given by [lo, 123 

gel =$A12(b * V x c)’ + + A , ,  (C  * V x b)’ - A l  [+(c - V x c - b * V x b) - 61, 

++B, (V b)’ +*B2 (V - c)’ +4B3 [Kb - V x b + c * V x c) + 41, 
+B,,(V-b)[-b-Vx b + c * V x c ) ]  

+ C (V * C )  (b V x c) + C, (V * c) (c * V x b). (20) 

In this expression A ,  Bi and Ci are the elastic constants of the system, q is the wave 
vector of the pitch, 6 is a material constant related to an inherent tendency of the 
smectic layers to be non-planar [lo], and the unit vectors, b and c are those already 
defined by figure 1. In the same manner as above, the electric torque can be calculated 
as 

where gE is the electric free energy dcnsity which, including both the ferroelectric and the 
dielectric coupling, can be written as 

ge (n * E)’ - P . E, (22) 

where E, is the dielectric anisotropy of the molecules and E~ is the permittivity of free 
space. This expression neglects the dielectric biaxiality [ 131 which is of no concern here 
as dielectric terms will be discarded anyway in our treatment of the problem. 

4. Tilt angle dependence of the viscosity coefficients and the elastic constants 
Equations (15), (16) and (20) define twenty viscosity coefficients and nine elastic 

constants. The temperature dependence of these material parameters does generally 
have two contributions, one due directly to the tilt angle dependence, in addition to the 
usual temperature dependence of condensed matter viscosities and elasticities. 
Studying the system in a not too large temperature interval below the SE-S: phase 
transition temperature, T,, we can probably, as a fairly good approximation, neglect 
the second of these two effects. However, as the tilt angle changes dramatically in the 
temperature interval of interest, we have to take the first of these two effects into 
account. It can be shown [3] that the symmetry of the system implies that the tilt angle 
dependence of the viscosity coefficients can be expressed as 

where the constants pi, 4, Cci and Ti can be assumed to be only weakly temperature 
dependent. Also the coefficients po,  pl, p z ,  ,I1 and ,I4, which are those remaining in the 
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BackJow in S z  Fredericks transitions 467 

S z  phase, should be expected to have only a weak temperature dependence. In the same 
manner we can write the elastic constants as [12] 

A12 = K + A1282, 242, = K + (24 a) 

B ,  3 2  = E 2 O 2 ,  B3 = B3e2, (24 4 
B,  = B ,  3 e 3 ,  C1 = C,8, c2 = C,6, (24 c) 

A1 1 = - K + A1 182 

where again we assume the temperature dependence of K ,  A ,  Bi and Ci to be weak. 
We will employ the scaling properties of the viscosity coefficients and the elastic 

constants given by equations (23) and (24) throughout this work. The advantage of 
doing so is that one achieves a better understanding of how the governing equations, 
and thus the quantities calculated from these, scale with respect to 0. 

5. The dynamic equations governing a SSFLC cell with backflow 
In order to study the Fredericks transition depicted in figure 2, one needs to write 

down the equations governing the two quantities 4(y7 t )  and u(y,  t). These equations 
have been derived by us elsewhere [3], with the exception that theferroelectric torque is 
not considered in that work. Studying a (+) compound, applying the electric field in a 
direction opposing the spontaneous polarization vector in the undisturbed cell, i.e. 

P ,  = - Po sin 4( y ,  t),  P ,  = Po cos 4( y, t),  P,  = 0, (25) 

E x  = 0, E,  = - E,, E ,  = 0, (26) 

the electric energy (22) is, if we. neglect the dielectric coupling, given by 

gE = PoEo cos 4. (27) 

From equation (21) we now calculate the ferroelectric torque 

Assuming we are studying the system sufficiently close to T,, we can employ the 
approximation sin 8 x 6. This approximation will be used in all calculations through- 
out this paper. As a ‘decent’ approximation we can also assume that the spontaneous 
polarization is proportional to the tilt [ 141, i.e. we introduce a weakly temperature 
dependent quantity P according to 

Po = PO. (29) 

We thus can write the ferroelectric torque (28) as 

Substituting the ansatz 

c, = cos +( y, t),  c, = sin 4( y, t), c, = 0, 

0, = u(y,  0, v, = 0, u, = 0, 

into equations (9H16) one can now derive the governing equations of the system. 
Following [3], and adding the ferroelectric torque (30) to the result of that paper, one 
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468 T. Carlsson et al. 

finally derives the following governing equations of the dynamic behaviour of the 
SSFLC cell, 

2( f5  + T5e2),d e + [f5 + x5e2 + (z2 + x2e2) ( C O S ~  4 -sin2 4)]e~; 
- [ (B,  sin2 4 + B2 cos2 4)& +$(B, - B,) sin 24 4’16 - PE,  sin 4 = 0, (33) 

d 
- [$ {p, + [p4 + L5 + 212 (cos’ 4 -sin2 &]e2 + 2p3 sin’ 4 cos’ qW4)u; 
dY 

+ d [& + X2 (cos2 4 - sin2 4)]0~]. (34) 
When analysing the Fredericks transition in which we are interested, these equations 
shall be solved with the boundary conditions 

4( -;, t )  = 4($ I )  =o, 

v (-;, i) = v(;, t )  = 0. 

(35)  

The form of the boundary conditions (35) implies that we are studying a system for 
which the surfaces do not switch in the transition. 

The structure of equations (33) and (34) implies that, if one wants to calculate 4( y ,  t )  
and v ( y ,  t )  for switching for which 4 is large, or where different boundary conditions for 
4 are assumed to apply on the two bounding glass plates, one has to perform the 
calculation numerically. Such numerical solutions of these equations in some different 
cases are underway and will be published in future work [l5]. Here, we will however be 
content to study only the start of the switching, and thus it is sufficient to study the 
linearized version of equations (33) and (34). Doing so we will be able to discuss some 
general feature of the dynamics of the transition and also make some general 
statements regarding the influence of backflow. Assuming 4 to be small, and neglecting 
terms of second power and higher in 4, equations (33) and (34) can be transformed into 

In the next section we will show that the critical field E, for which the Fredericks 
transition is induced is given by 

By introducing the reduced field 

and also by making the following definitions, 
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Backjow in S,* Fredericks transitions 469 

equations (37) and (38) can be written as 

d2  
7t2E 
- @’+ (p =p$ +pa ul, 

- d [au’ + b$] = 0. 
dY 

(43) 

Equations (42) and (43), together with the boundary conditions (35) and (36), are the 
equations which we will solve. 

6. Study of the threshold neglecting backflow 
In this section we study the transition, assuming that backflow effects are not 

induced by the reorientation of the director. To do so we neglect the term Bau’ in 
equation (42), and look for a solution, fulfilling the boundary condition (33, of the 
equation thus obtained, 

In this equation E is the reduced field defined by equation (40), d is the sample thickness 
and p is the constant with the dimension of time defined by equation (41 a). Generally, 
the solution of equation (44) can be written as a Fourier series. Studying the transition 
just above the threshold, it is enough to retain only the slowest varying term of this 
series and we thus make the following ansatz for the solution, 

Substituting equation (45) into equation (44), we calculate the response time t ,  of the 
transition, 

& 
to=@-. 

E -  1 (461 

From equation (46) we see that ~ < 1  implies that t o<O,  and thus a fluctuation 
q5 = 4o cos(ny/d) of the c-director decreases exponentially back to the undisturbed 
configuration. On the other hand, E > 1 implies that to > 0, and the corresponding 
fluctuations will be amplified by the electric field inducing the Fredericks transition. 
Thus we have proven that the definition (39) represents the critical field E ,  for which the 
transition will occur. Substituting equations (40) and (41 a) into equation (46) we can 
write the response time to as 

€0 to=- 
&-  1’ 

where the constant 

(47) 

represents a typical time scale of the system. From equation (47) we notice that when 
the field just exceeds the critical one ( E Z  l), the transition is infinitely slow. By this 
reason we do not expect backflow effects to influence the expression of the critical field 
E,. However, for large electric fields (&>> I), we show in the next section that not only the 
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470 T. Carlsson et al. 

response time to, but also the profile (45) of the c-director will be influenced by backflow 
effects. 

7. Influence of backflow 
In the previous section we calculated the response time (equations (46H48)) of the 

Fredericks transition, and the c-director profile (equation (45)) as it appears at the start 
of the switching, assuming that the backflow effects are negligible. We will now 
investigate to what extent these results are modified when backflow is taken into 
account in the calculations. The approach we use is similar to that by Pieranski et al. 
[4,5], when analysing the influence of backflow for a similar problem in nematic liquid 
crystals. 

7.1. Solving the equations 
In order to study the dynamical behaviour of the Fredericks transition we shall 

solve equations (42) and (43) together with the boundary conditions (35) and (36). It is 
easily seen from equation (43) that the ansatz for the c-director 4=40(t)cos(ny/d) 
implies a velocity profile v = vo(t) sin (nyld). However, this solution does not fulfil the 
non-slip conditions (36) on bounding plates. In order to fulfil the boundary conditions 
(35) and (36) for both 4(y , t )  and v(y,  t),  we thus have to make a more complex ansatz 
c4,51 

4 = 4o (cos qy - cos @) exp ( t)’ 
2 (49) 

We see that this solution does not follow the quasistatic state, and the wave vector of 
the distortion q and the response time tb are, due to the backflow, functions of the 
magnitude of the applied electric field E.  Substituting equations (49) and (50) into 
equations (42) and (43), one derives the following three relations for the four quantities 
4, th,fO and OO,  

P 4 0  40 + 40 =- + Crgvoq, 
tb 

qd 2CrPoo qd sin 2’ qd q50 cos - = f lc$o cos -+- 
2 2 d  

By introducing the definitions 

the solution of equations (51H53) can be written as 

4X2 tan X - ( X / A )  
n2 t a n x - X  ’ 

&=- 
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Equations (55) and (56) shall be interpreted in the following way. For a given set of 
viscosity coefficients, the parameter A ,  which is defined by equations (41) and (54), 
adopts a specific value. The viscosity coefficients can be shown to fulfil certain 
inequalities [3], and from these it can be proven that the parameter A must always be 
positive. Furthermore it can be seen from equations (55) and (56) that, if the value of A 
exceeds unity, the solution of these equations will exhibit discontinuities which 
correspond to a behaviour of the system which probably is unphysical. In their papers 
[4,5], Pieranski et al., claim that for a nematic liquid crystal, the constant 
corresponding to A cannot exceed unity. We cannot formally prove that this must be 
the case also for the system we study, but this seems probable. Thus we assume 

O < A < l  (57) 
to be valid in order to avoid discussing unphysical solutions of equations (55)-(56). 

For a given value of A ,  equation (55) gives a relation between the reduced electric 
field E and the wave vector of the distortion, which is determined by the quantity X .  
When E is varied between unity and infinity, X varies between 4 2  and 4.49. We now 
introduce the dimensionless parameter y by either of the relations 

i7 i7 
q=yd'  x=y-. 

2 

Thus y measures the deviation of the wave vector q of the distortion from its quasistatic 
value n/d. When X varies between the two limits given above, y varies between unity 
and 2.85. 

Once X is calculated for a given value of E by the use of equation (55), the response 
time of the transition, tb, is given by equation (56). However, we will rather be interested 
in the ratio between the response time Calculated with ( t b )  and without (to) backflow 
effects being taken into account, and from equations (46) and (56) we can write 

(59) 
t o  E 

7.2. Numerical results 
In figure 3 is depicted how the wave vector of the distortion q varies with the applied 

reduced electric field E for four different values of the parameter A. We prefer to show 
the value of y, which is the ratio of q when backflow effects are taken into account and 
its quasistatic value n/d. We notice from the figure that when A is small, y is close to 
unity and backflow effects are negligible. When A becomes larger and approaches 
unity, backflow effects become pronounced and the wave vector of the distortion 
increases. The ratio of the response times calculated with and without backflow 
(equation (59)) is depicted in figure 4, using the same sequence of A as above. Again we 
notice how backflow effects become pronounced as the value of the parameter A 
increases. As is seen from the figure, backflow effects speed up the response time of the 
transition considerably if A is large enough. 

As was discussed above, for a certain combination of the parameter A and the 
reduced field E ,  the c-director (equation (49)) and the velocity (equation (50)) profiles of 
the distortion can be characterized by the parameter y, which fulfils the relation 

1 < y < 2.85. (60) 
In figure 5 we show how the envelopes of the profiles 4(y,  t )  and v ( y ,  t )  change when y is 
varied between these two limits. We notice that for a large value of y, when backflow 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



472 T. Carlsson et al. 

4 

> - 1 1 / A = 0 . 5  
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0 0.0 10.0 20.0 30.0 40.0 50.0 

REDUCED ELECTRIC FIELD (E) 

Figure 3. The ratio, q, of the wave vector of the distortion q, calculated with and without 
backflow effects being taken into account. The figure depicts how 9 varies with the applied 
reduced electric field c for four different values of the parameter A.  
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Figure 4. The ratio t , / to  of the response times calculated with and without backflow effects 
being taken into account. The figure depicts how t,/to varies with applied reduced electric 
field E for four different values of the parameter A.  
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y = dl2 

y = - d12 

473 

Figure 5. The envelopes of the c-director and velocity profiles as functions of v.  

effects are pronounced, the switching of the c-director starts in the ‘wrong’ direction 
close to the boundaries of the glass plates. 

1.3. Formations of 271 disclination walls as a consequence of backflow 
From the discussion in 0 7.2 it is clear that backflow can cause the switching of the c- 

director in some cases to start in different directions in different parts of the sample. The 
condition for this to happen is that the derivative d4/dz shall be negative at the lower 
plate, i.e. 

31 <o, 
d y  y = - d / 2  

which, with the ansatz (49) for +( y), is equivalent to the condition q > 2. Thus, whenever 
the combination of the material parameter A and the reduced electric field E is such that 
the calculated y~ in figure 3 exceeds two, there is a possibility of the formation of two 271 
walls close to the bounding plates. 

In figure 6 is a sequence of the time evolution of the envelopes 4(y, t )  and v(y, t )  
which have been calculated by solving the governing equations (33) and (34) 
numerically [ 151. The choice of the parameter A is A = 0.5 and the reduced field is put 
equal to E = 5, 40 and 100, respectively. From figure 3 it is seen that, for A = 0.5, the 
limiting value of the reduced field for which the switching close to the bounding plates 
goes in the opposite direction to that in the bulk is close to E = 8. In the upper part of 
figure 6 we have chosen ~ = 5 ,  and it can be seen that the switching proceeds 
homogeneously in the whole sample. Increasing the field to E = 40 (middle part of 
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a 

5 

Figure 6. Time evolution (obtained by numerical solution [lS] of the governing equations) of 
the envelopes +(y,  f)  and u(y ,  t )  for three different reduced electric fields E. When E < 8, the 
switching of the c-director is homogeneous throughout the sample (upper part). When 
~ > 8 ,  backflow effects cause the switching to start in the ‘wrong’ direction close to the 
bounding plates. Elasticity will however drive the system to a final state, which is 
homogeneous if E is not too large (middle part). Increasing E enough, the ferroelectric 
torque will dominate over the elastic torque, and the final state will exhibit two 271 walls 
close to the bounding plates (lower part). The parameter A is chosen to be A =0.5 in the 
calculation. 

figure), one sees how the switching close to the boundaries starts in the ‘wrong’ 
direction. However, the elastic torque will eventually overcome the ferroelectric torque 
and the final state will still be homogeneous. If the electric field is large enough, as in the 
lower part of the figure ( E =  loo), the ferroelectric torque dominates over the elastic 
torque and the final configuration of the system exhibits two 271 walls close to the 
bounding plates. We thus conclude that trying to decrease the response time by 
increasing the field will ultimately, due to backflow effects, create two 271 disclinations 
in the sample, destroying the homogeneously ordered final state which we might be 
trying to achieve. 
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7.4. The force on the bounding plates 
When the cell is switching, a force z = z f  per unit area is exerted on the bounding 

plates. This force can be calculated from equation (43). By integrating this equation, the 
constant of integration will correspond to z and one obtains 

z = a d +  b d .  (62) 

Substituting equations (49) and (50) into equation (62), and employing the relation (53) 
one derives 

z = a q cos--- sin- uo exp ( t / tb )  = ( : :*:) 
q t b  

Thus we observe that switching the cell in an oscillatory manner, due to an alternating 
electric field, induces an oscillating force on the bounding plates. This force is probably 
the force that is driving the electromechanical coupling in SSFLCs which has been 
observed by Eher et al. [16]. 

8. Discussion 
By employing the recently developed elastic-hydrodynamic theory of the S z  phase 

[2,3,10], in this work we have shown to what extent backflow effects influence the 
switching of a SSFLC in one case, i.e. the Fredericks transition in the geometry depicted 
in figure 2. Among the 20 viscosity coefficients and 9 elastic constants for a complete 
description of the system, only six viscosities (z,, z,, A,, A,, p o  and p4) and one elastic 
constant (B,) enter the governing equations (42) and (43) of the situation analysed in 
this work. These material parameters must fulfil [3,5] the scaling relations given by 
equations (23) and (24). Employing this scaling, we introduce the constants Z,, Z,, T,, X,, 
po,  ji4 and B,, the temperature dependence of which can be assumed to be negligible to 
a fairly high degree of accuracy. Within the model which we are working, the governing 
equations and consequently all results are explicitly expressed using this scaling. Thus, 
the temperature dependence of the results implicitly enters through the temperature 
dependence of 8. 

Both the viscosity coefficients [3] and the elastic constant [S] must fulfil certain 
inequalities. Those relevant for this work are 

&>O, Z5>0, &>>,, po>o, 

B, > 0. 

Furthermore, one can prove that, providing we are studying a (+) compound (P>O), 
the constants a and b, which are defined by equation (48), must also be positive, 

a>O, p>o. (67) 

For the Fredericks transition we study, we have been able to recast the governing 
equations in such a way that only one parameter ( A  = bcr/a, c.f. equations (41)) governs 
the behaviour of the transition. This parameter depends only on the values of the 
viscosity coefficients and can be shown [3] to be positive. As was mentioned before, we 
cannot prove that A is always smaller than unity, but as the opposite case produces 
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unphysical solutions of the governing equations, we have only considered the case 
O <  A <  1 in this work, leaving the formal proof of this relation for future work. For a 
small A,  backflow effects are negligible, while they become important as A approaches 
unity. That this is the case can be understood qualitatively in the following way. The 
constant A is proportional to the ratio a/b. It can be shown 131, that the constants a and 
b are proportional to the effective shearing viscosity and the rotational viscosity, 
respectively. A small value of b/a corresponds to the case when the shearing viscosity is 
comparatively large and a macroscopic shear flow in the system is rapidly damped. 
Thus backflow effects will not be of importance in this case. If, on the other hand, b/a is 
large, the shearing viscosity is small and a macroscopic flow is more easily developed in 
the system. The constant A is also proportional to a. From a mathematical point of 
view, it is obvious that whenever a is small, the influence of the term proportional to v’ 
in the switching equation (42) decreases, and thus the influence of backflow becomes 
less pronounced. We can understand the physical reason for this behaviour by 
examining equation (37), which can be interpreted as a balance of torque equation. The 
two terms on the right-hand side are proportional to the rotational and the shearing 
torques, respectively. Thus, the constant a (equation (41 a)) represents the ratio of the 
coupling constants of the shearing torque (for (b =0) and the rotational torque. If this 
ratio is large, it is comparatively easy to induce a shear in the system and backflow 
effects should be expected to be pronounced. If a is small, on the other hand, backflow 
effects should be negligible. 

Figures 3-6 show how backflow effects influence the switching of the cell and 
represent the main results of this paper. Figure 3 clearly shows how backflow effects 
depend on A as well as E.  Furthermore, one notices that the more important the 
backflow effects become, the larger is the wave vector of the distortion 4 = ny/d, as 
shown in figure 5 which depicts how the envelopes of the profiles #(y , t )  and u(y , t )  
change as functions of y. We should also remember that in this figure, the graphs only 
represent the normalized shapes of $(y , t )  and v(y , t ) ,  and are not related to the 
amplitudes $o and u,,. As is seen from equation (53), u,, - b/a$o and as discussed above, 
when b/a is small, backflow effects are negligible and accordingly the amplitude vo of 
the velocity profile approaches zero. One interesting effect of backflow can be noticed in 
figures 5 and 6. When the backflow effects are pronounced, the switching close to the 
bounding plates starts in the ‘wrong’ direction. This will, for strong enough electric 
fields, lead to the formation of disclinations in the sample, destroying the homo- 
geneously ordered final state we might have expected. Nevertheless, it is clear from 
figure 4, that the backflow effects, if these are large enough, will speed up the switching 
considerably. 

Since we have solved only the linearized equations (42) and (43), the results of this 
paper (with the exception of figure 6) apply only to the start of the switching. 
Nevertheless, we have been able to calculate the value of the typical response time of the 
transition and to characterize the crucial parameter (A),  which determines to what 
extent backflow effects influence the switching. If we want to study the full switching of 
the system, or the case when different boundary conditions apply on the bounding 
plates, we are instead forced to solve equations (33) and (34). These equations must, 
however, be solved numerically. One result of such studies is shown in figure 6 and a full 
account of these calculations will be published in the future [ 1.51. However, by rewriting 
equations (33) and (34) into a form similar to that of equations (42) and (43), we can still 
derive an expression of the crucial parameter determining whether backflow effects 
should be expected to be important or not. This parameter is the parameter 
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corresponding to A, but will now depend on the orientation of the c-director, i.e. we 
shall study the parameter A(Q,) given by 

The value of this parameter will change during the switching and also be different in 
different parts of the cell. Anyhow, as a rule of thumb, whenever we find A(Q,) to be close 
to unity, we shall expect backflow to occur in the corresponding part of the cell. It is also 
obvious that if backflow occurs in some part of the cell, flow will be induced in the 
neighbouring parts of the cell due to viscous forces. 

In conclusion, in this paper we have shown that backflow effects should be expected 
to influence the switching behaviour of a SSFLC cell in most cases. We have been able 
to identify the parameter, A (equation (54)), or in the more general case A(+) (equation 
(68)), the value of which determines whether backflow effects will be of importance or 
not. However, as rather little experimental information about the values of the viscosity 
coefficients of the S,* phase exists today, we cannot make any statements regarding 
experimental values of A.  Thus, the experimental determination of these coefficients 
must be considered as one of the urgent tasks to be undertaken in the current research 
concerning the dynamical behaviour of the S,* phase. 
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